### Transcription of de Broglie’s hypothesis: wave-particle duality - NISER

1 De **broglie** 's **hypothesis** : **wave-particle** **duality** Light behaves as wave when it undergoes interference, diffraction etc. and is com- pletely described by Maxwell's equations. But then, the wave nature of electromag- netic radiation is called into question when it is involved in blackbody radiation, photoelectric effect and such. Einstein forwarded his idea of photon, bundle of quan- tized radiant energy localized in a small volume, as a way to describe particle-like nature of light. The energy and momentum of such a photon was proposed to be, E h E = h and p = = . c . de **broglie** (1924) made a great unifying, speculative **hypothesis** that just as radiation has particle-like properties, electrons and other material **particles** possess wave-like properties.

2 For free material **particles** , de **broglie** assumed that the associated wave also has a frequency and wavelength related to its energy E and momentum p, E h = and = . (60). h p For non-relativistic **particles** having mass m and moving with a velocity v and kinetic energy Ek = mv 2 /2, the de **broglie** wavelength is h h = = (61). mv 2mEk For high energy **particles** ,pE 2 = p2 c2 + m20 c4 , having kinetic energy Ek = E m0 c2 , the momentum is p c = Ek (Ek + 2m0 c2 ) and hence the de **broglie** wavelength is, h hc = = p . (62). p Ek (Ek + 2m0 c2 ). For instance, the de **broglie** wavelength of an object of mass m = and moving with a velocity v = 10m/s is (h = 10 34 J-s). h 10 34 J s = = = 10 35 m = 10 25 . A. mv 10kg m/s The de **broglie** wavelengths of an electron (m = 10 31 kg) at kinetic energy 100eV and eV are (1eV = 10 19 J), h 10 34.

3 = = = . A. 2mE (2 10 31 100 10 19 )1/2. ch rel = p = . A. E(E + 2m0 c2 ). h nr = = A. 2mE. Sure enough, de **broglie** 's **hypothesis** of **wave-particle** **duality** was confirmed by Davis- son and Germer (1927) and Thomson (1927) [refer Eisberg & Resnick, pg 64 . 67]. 1. The de **broglie** **hypothesis** gives an interesting physical insight into Bohr's quan- tization rule (34), nh mvr = pr = , 2 . where p is the linear momentum of an electron in an allowed orbit of radius r. If we use equation (60), the expression for p in terms of de **broglie** 's wavelength p = h/ , Bohr's quantization rule can be written as, hr nh = 2 r = n n = 1, 2, 3, .. (63). 2 . implying the allowed orbits are those in which the circumference of the orbit can contain exactly an integral number of de **broglie** wavelengths.

4 Let us express the de **broglie** wave of a free micro particle by a plane wave of constant amplitude A, which will represent a particle of energy E = h = ~ and momentum p = h/ = ~k, ~. (~r, t) = Aei(k ~r t) in 1 dim (x, t) = Aei(kx t) (64). Assuming | (x, t)|2 gives the probability of finding the particle at space-time point (x, t) (according to Max Born's idea that came much later), it is constant A2 every- where. This implies that probability of finding our particle is same everywhere or, in other words, we do not know where it is. But our idea of particle is one having definite momentum and at the same time a specific position it is localized. If we know the position of the particle fairly accurately, then probability of finding it in different place must be confined to that space (say, x) outside which the probability is zero.

5 Therefore, the matter wave must somehow be retricted in that space with the particle we have a wave train of length x and wavelength of the wave train corresponds to particle momentum. In order to manufacture a wave train we revoke the idea of group of moving **waves** of classical wave motion. Suppose we have two **waves** of ( , k) and ( + d , k + dk). and for simplicity let them be represented as 1 = A cos[kx t] and 2 = A cos[(k + dk)x ( + d )t]. We superpose these two **waves** , considering d and dk k, to obtain, = 1 + 2.. dk d 2k + dk 2 + d . = 2A cos x t cos x t 2 2 2 2.. dk d . 2A cos x t cos[kx t]. (65). 2 2. 2. From the plot of above function we see that two **waves** of slightly different frequency and wavelength, interfere and reinforce in such a way as to produce a series of groups.

6 These groups, and the individual **waves** they contain, are both moving in the same direction. The velocity of the group, called group velocity vg and velocity of the individual **waves** , called phase velocity vp , are given by, d . vg = vp = (66). dk k If the particle of mass m is moving with a velocity v so the kinetic energy E = mv 2 /2. and momentum p = mv, then E dE p dp = d = and k = dk =. ~ ~ ~ ~. which leads to, d dE mv dv vg = = = = v dk dp m dv the velocity of the particle is equal to velocity of the group of matter wave describing the particle. The same is true for relativistic particle. The superposition of two matter **waves** of slightly varying frequency and wavenum- ber k manage to create succession of groups but not one group which is the wave train.

7 To obtain a wave train or a wave packet of finite extent in space, we need superposition of large number **waves** with different but slightly varying frequency and wavenumber, Z . 1. (x, t) = dk A(k)ei(kx (k)t) . 2 . 3. Assuming A(k) is nonzero and constant only in an interval, k0 k/2 k k0 +. k/2, if k is not too large, we can expand (k) about k0 , . d . (k) = (k0 ) + (k k0 ) + .. dk k=k0. and write the above wave function as, Z k0 + k/2. 1. (x, t) = dk A ei(kx (k)t). 2 k0 k/2. A i(k0 x (k0 )t) k0 + k/2. Z. = e dk ei(k k0 )[x (d /dk)0 t]. 2 k0 k/2. r 2 sin[ k(x (d /dk)0 t)/2] i(k0 x (k0 )t). = A e (67). x (d /dk)0 t The equation (67) defines a wave packet of finite extent, x 2 2 / k, whose group velocity is vg = (d /dk)k=k0 and phase velocity is vp = (k0 )/k0 as before.

8 A very interesting illustration of wave-nature of microscopic particle is Feynman's thought experiment double-slit experiment with classical and quantum **particles** . for details of which see Feynman's Lecture vol 3. 4.